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Evaluation of single-fibre strength distribution 
from fibre bundle strength 

K. K. PHANI  
Central Glass and Ceramic Research Institute, Calcutta 700032, India 

A new modified Weibull distribution function has been suggested for analysing the strength of 
fibres used as reinforcements for advanced composites. The function provides an upper and a 
lower strength limit and is characterized by two shape and two location parameters. A method 
for determining the parameters of this distribution from the analysis of the tensile curves of 
fibre bundles has also been developed. Application of the method to the experimental results 
on Thornel-300 carbon fibres shows that the shape parameters become modified in the case 
of bundles. 

1. I n t r o d u c t i o n  
Reinforcing fibres such as glass or carbon exhibit a 
very broad tensile strength distribution. This is usually 
attributed to the pre-existing flaws in these fibres, 
especially on fibre surfaces. Scatter in the sizes of these 
initial flaws accounts for the scatter in strength. Cur- 
rent theories of composite strength [1, 2] usually 
require an accurate estimation of the fibre strength 
and its distribution at short lengths of the order of the 
critical length for stress transfer ( ~  0.5 mm or less). 
Since it is difficult to obtain reliable data from experi- 
mental measurements at these short lengths, the 
strength is usually obtained from an extrapolation of 
the mean strength and strength distribution data 
obtained at long lengths by using the Weibull distribu- 
tion function. However, such an extrapolation tends 
to overestimate the strength value at short gauge 
lengths [3-6], and it has been concluded that a single 
Weibull distribution is inconsistent with the experi- 
mental data [7]. Similar observations have also been 
made by Olshansky et al. [8] and Kalish et al. [9] in 
analysing the strength of optical glass fibres. 

Chi et al. [10] pointed out the experimental difficul- 
ties associated with the measurements of single-fibre 
strength to obtain reliable data. They derived a theor- 
etical expression for the load-strain (P-e) relationship 
for a bundle of fibres, assuming the strength of single 
fibres to have a unimodal Weibull distribution. By 
analysing the characteristics of the P e expression they 
developed methods for determining the parameters of 
the Weibull distribution for single fibre strength. 

The present author has analysed the limitations of 
the unimodal Weibull distribution and proposed a 
new modified Weibull distribution function [11, 12] 
for the analysis of the strength of brittle fibres. In this 
paper, the same function has been used in deriving the 
P -e  expression for a bundle of fibres following the 
method given by Chi et al. [10]. The parameters of the 
proposed distribution for single-fibre strength are then 
determined following one of the methods given by Chi 
et al. [10]. The validity of the method is verified by 
analysing the strength of carbon fibres. 
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2. Analysis 
2.1. Strength distribution function 
Chi et al. [10] made the following assumptions in 
deriving their relations. 

1. The single fibre strength distribution follows the 
Weibull distribution given by 

F(a) = 1 - exp [ - L ( a / a o )  m] (1) 

where F(a) is the failure probability of a single fibre of 
length L under an applied stress no greater than a; a0 
and m are the scaling parameter and Weibull modulus, 
respectively. 

2. For a single fibre the applied stress a and strain 
follow Hooke's law up to fracture: 

= Ere (2) 

where Ef is the fibre elastic modulus. 
3. The applied load is distributed uniformly among 

the surviving fibres at any instant during a bundle 
tensile test. 

In the following derivation the last two assump- 
tions remain the same; however, the flaw distribution 
function is modified based on the following argu- 
ment. Statistically, the best-fitting distribution for any 
strength data can be obtained by calculating the stan- 
dardized coefficients of kurtosis and skewness of the 
strength data [13]. From such an analysis of numerous 
sets of strength data for brittle solids, Snowden [13] 
has concluded that the beta distribution rather than 
the Weibull distribution describes the brittle-solid 
strength data best. As an example, an analysis of 
single carbon fibre strength data (Thornel-300) tested 
at a gauge length of 60 mm, reported by Chi and Chou 
[14], is shown in Fig. 1. The values of standardized 
coefficients of skewness square and kurtosis, as cal- 
culated from the various moments of this distribution, 
are obtained as 0.296 and 2.936, respectively, and 
the corresponding distribution is obtained as the 
beta distribution from Fig. 2 of Snowden [13]. Analy- 
sis of  the data in terms of the Pearson system [15] of 
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Figure 1 Tensile strength of Thornel-300 carbon single fibres tested 
using a gauge length of 60 ram. The solid line corresponds to the 
fitted beta distribution. 

probability density function yields the beta distribu- 
tion, which is also shown in Fig. 1. 

In the beta distribution, the values of  the variate are 
limited to a finite interval, which is more realistic for 
the strength of a brittle solid. It  has also two shape 
parameters. On the other hand, the Weibull distribu- 
tion has been criticised [9, 16] for its physically unsat- 
isfactory boundary condition a = Go for F(a) = 1 
(certainty of  failure). To overcome this limitation Kies 
[16] proposed a modification of  the flaw distribution 

function of the form 

N(a)  = ( a  - O'L~ rn° (3) 
\au - a /  

where N(a)  is the number of  flaws having strength a 
or less, aL and au are the lower and upper strength 
limit, respectively, and rn 0 is defined as the damage 
coefficient. The functional form of Equation 3 is simi- 
lar to one obtained from the beta distribution, except 
that it has only one shape parameter. Thus a further 
modification has been suggested [11, 12] in the form 

( T I / (  T 2 N(a)  = a Z aL au - a (4) 
a0] / / \  a02 / 

where a0], a02 and m~, m2 are the two scaling and shape 
parameters, respectively. For  a brittle material like 
carbon fibre a lower strength limit aL = 0 and an 
upper strength limit equal to some realistic theoretical 
maximum value are reasonable [1 3]. Thus Equation 1 
becomes 

[ O" (7" U - -  G 
F(a)  = 1 -  exp - L  " a~  

(5) 

2.2. Fibre bundle tensile load-strain 
relationship 

From Equations 5 and 2, we obtain 

[ F(e) = 1 - exp - L  e eu -- e (6) 

where F(e) is the failure probability for a strain s and 
below; eu is the upper limit of  failure strain and 

So, = ~o,/Ef 
(7) 

%2 = ~ o 2 / E f  
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Figure 2 (o) Strength distribution of single fibres 
obtained from the tensile curve of a fibre bundle [10]. 
( - - - )  Weibull, ( ) proposed distribution. 



For a bundle of fibres consisting of No fibres, the 
number of surviving fibres at an applied strain e is 

U = N o [ 1 -  F(e)] = No 

x exp - L  e % -  ~ (8) 

Thus, the applied load P on the bundle is given by 

P = a A N  = A E r s N o  

E x exp - L  e e u -  s (9) 

where A is the cross-sectional area of a single fibre in 
the bundle. Thus, if A, No, L, Er, e01, e0z, eu, ml and 
m 2 are known, the P - e  curve for a bundle of  fibres 
could be drawn according to Equation 9. 

Differentiating Equation 9 with respect to s, 

d_ffP = A E f N o C I  - ( L m l ~ ( e - - - ~ ' - l / (  su - - s ~  2 
de \So l  / \ S o l /  / \  Co2 / 

( g  gU -- S ( L m 2 )  \ m i l l  \ m 2 + l  7 

) J 
x exp - L  e eu - s (10) 

and the slope at e = 0 is 

dP = AErNo (l 1) So = ~ = 0  

which is identical to one obtained from the Weibull 
distribution [10]. Thus the equation for tangent line of 
the P - s  curve at e = 0 is 

P* = AEfNos (12) 

Combining Equations 9 and 12, 

P/P*  = 1 - F(e) 

o r  

P/Sos = 1 - F ( e )  (13) 

Thus the survival probability at any strain level e on 
the P - e  curve can be evaluated from Equation 13 by 
calculating So from Equation 11 with the data El, A 
and No of the fibre bundle. Once the experimental 
values of  e and [1 - F(s)] are known, the parameters 
of the single-fibre strength distribution can be obtained 
by fitting Equation 6, which is written in the form 

1 e inI(1) In(l- F(s))I = mlln(~ol ) 
- rn. In ( eu ------f) ( 1 4 )  

\ s02 / 

3. Data analysis and discussion 
The applicability of the method developed in this paper 
has been evaluated in terms of the data reported by 
Chi et al. [10] and Chi and Chou [14]. The data com- 
prise single-fibre strengths measured using a gauge 
length of 60 mm and the load-s t ra in  (P-e)  curves for 
bundles of Thornel-300 carbon fibres (No = 1000, 
fibre diameter = 7 ktm, Ef = 225 GPa) measured at 

the same gauge length. As reported by Chi et al. [10], 
Fig. 2 shows the experimental points for a fibre bundle 
plotted on Weibull axes. 

For  fitting Equation 14 to the data an initial esti- 
mate of s u was taken as 0.1 (assuming an approxi- 
mate theoretical maximum strength equal to 1/10th 
of the elastic modulus). A set of values was assumed 
for e01 and ~02 and the parameters m~ and m2 were 
evaluated from the experimental data by regression 
analysis. From the calculated and experimental values 
ofln {(l/L) In [1/(1 - F(e)]}, a least-squares sum was 
evaluated for the particular set of parameters s01 and 
e02. The computation was then iterated with a new set 
of e01 and e02 until the minimum least-squares sum was 
found. The process was repeated by changing the 
value of eu until the minimum least-squares sum was 
obtained. The values of the parameters thus obtained 
are eu = 0.016, e01 = 0.08, ~02 = 0.02, rnl = 2.995 
and m 2 = 1.937. Equation 14 is plotted in Fig. 2, 
showing excellent agreement with the data. Also 
plotted in Fig. 2 is the Weibull equation given by Chi 
et al. [10] with m = 4.38 and c0 = 0.0257. 

In order to compare experimental data with the 
fitted distribution functions, the sum of squares is used 
as a measure of the goodness of fit between the func- 
tion and data. The sum of squares is given by 

Q = 1 i=l_ (15) 

i - I  

where ~i is the strain value calculated for the appro- 
priate F value and the calculated parameters of the 
distribution function; e i is the measured strain and ~ is 
the mean of the distribution. For  the Weibull distribu- 
tion ~ values are obtained from the expression 

~i^" = So~ [1 - F ( ~ ) ]  

For the proposed distribution ~ is obtained by solving 
Equation 14 by the Newton-Raphson  method. For a 
perfect fit between the data and the distribution func- 
tion the value of Q will be equal to unity. In general 
Q > 0.95 indicates a good fit. In the present case, the 
values of Q are obtained as 0.997 and 0.897 for the 
proposed (Equation 14) and Weibull distribution 
function, respectively, indicating that the Weibull dis- 
tribution provides a poor fit to the data. 

The theoretical P - s  curve calculated from Equation 
5 with the parameters obtained before is shown in 
Fig. 3 by the solid line. The experimental data points 
are also indicated. The consistency between the theory 
and experiment is excellent in the entire range of 
strain. Also shown in Fig. 3 is the curve corresponding 
to the Weibull distribution. 

In order to compare the values of parameters evalu- 
ated from bundle strength with single-fibre data, 
Equation 5 was fitted to thesingle-fibre data (60 mm 
gauge length) with au = evEf = 3600MPa, a01 = 
~01Ef = 18 000 MPa and tr02 = ~02Er =.,.,4500 MPa. The 
regression analysis gives the values of m{ = 2.659 
and m2 = 0.423. The value of Q is obtained as 0.969, 
indicating a good fit,: The fitted equation along with 
the experimental data is shown in Fig. 4. It may be 
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Figure 3 Comparison of theoretical P - s  curves with experimental 
data. (e) Experimental, ( - - - )  Weibull, ( ) proposed. 

noted that though the value of ml remains nearly 
identical for both the bundle and the single fibre, there 
is a marked change in the value of m 2 in the case of 
single fibres. Like the Weibull modulus, if we associate 
these parameters with scatter in the low- and high- 
strength groups of fibres, a low value of m2 in the case 
of single fibres indicates a larger scatter in the high- 
strength group compared to that of the bundle. A 
possible explanation for this may be given as follows: 
the strength of a bundle will depend upon the propor- 
tion of high- and low-strength fibres present in it. For 
a bundle in which the majority of the fibres are of low 
strength the fibres will break at a comparatively low 
load, thereby increasing the load on a small number of 
high-strength fibres. Also, there will be a dynamic load 

on the surviving fibres due to sudden breakage of the 
low-strength group. Thus, the small number of high- 
strength fibres will contribute little to the strength and 
the bundle strength will be essentially controlled by 
the low-strength group, giving a similar distribution of 
strength to that of single fibres. On the other hand, for 
a bundle in which there is a small number of low- 
strength fibres, the breakage of these during loading 
will have comparatively less effect on the large number 
of surviving fibres, and the strength of the bundle will 
depend essentially on the high-strength group only. 
Thus the effect of comparatively low-strength fibres 
will be masked, showing a different distribution to 
that of single fibres. 

It may be noted that the theoretical P-~ curve as 
shown in Fig. 3 is a continuous and smooth curve 
under both loading and unloading conditions. The 
experimental curves as given by Chi et al. [10] exhibit 
steps, i.e. decreases in tensile load at constant strain, 
which are attributed to the dynamic load effect. 

4. Conclusions 
1. The strength distribution of single fibres can be 

described by Equation 5. The function provides an 
upper and a lower strength limit, which is consistent 
with the boundary condition of the physical phenom- 
ena it represents. 

2. The theoretical P-~ curve for a bundle of fibre 
(Equation 9) derived on the basis of above equation 
shows excellent agreement with the experimental data 
during both loading and unloading of the bundle. 

3. Determination of the distribution parameters of 
single fibres from the bundle P - e  curve shows that 
reliable values of the parameters can be obtained 
except for the shape parameter m 2. 
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Figure 4 Strength distributions of single fibres 
(60 mm gauge length) plotted on Weibull axes. (O) 
Experimental, ( -) Weibull, ( ) proposed. 
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